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Abstract. We study the resonant tunnelling in double-barrier hetwostructures via Landau levels 
in the sequential tunnelling approach. The effects ofthe space-charge formation in the electrodes 
and in the well together with inelastic-scattering broadening are t&en into account. Under 
appropriate approximations. the tunnelling current md differential conductance CM be written 
as simpler forms which analytically reproduce the main features of experiments, Then the 
drpendences on the temperature and magnetic field are studied numerically; these are also in 
accordance with experiments 

1. Introduction 

Since the pioneering work of Tsu and Esaki 11.21 on resonant tunnelling in quantum-well 
structures, double-barrier heterostructures (DBHSS) have attracted a great deal of attention 
[ 3 4 ]  owing to the relative ease of fabrication and many interesting features such as negative 
differential conductance (NDC) [7,8], fast response time [9] and intrinsic bistability [IO-141. 
Because of these new features, the DBHSs have potentiality for many practical applications. 
There are mainly two theoretical pictures in studies of the resonant tunnelling in the DBHSs. 
The first one is the global tunnelling model (GTM) [3,15,16], in which the incident electron 
is characterized by a plane wave with a well defined energy. By use of the transfer-matrix 
technique, the total transmissivity of the structure is determined as a function of the incident 
electron energy and an applied bias perpendicular to the interfaces. The tunnelling current 
of the system is obtained from the total transmission coefficient of the whole structure. 
The second picture is the sequential tunnelling model (STM) proposed by Luryi [7].  In 
this theoretical picture [17, 18,11,12], the resonant tunnelling in the DBHSs is regarded 
as two successive processes, in which the three-dimensional (3D) state electrons in the 
emitter tunnel into the two-dimensional (ZD) quasibound states in the well and subsequently 
escape from the well into 3~ states in the collector. According to this model, the resonant 
tunnelling occurs when the longitudinal energy e2 of the incident electron coincides with 
the quasibound level in the well determined by the one-dimensional potential, and stops 
suddenly when the quasibound level in the well is just below the bottom of the conduction 
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band of the emitter since the component of the electron momentum parallel to the interfaces 
as well as the electron energy is conserved. It has been shown that the two interpretations 
are equivalent and lead to the same predictions for the DC current when no magnetic field 
is applied and inelastic-scattering processes are not included [18]. 

Recently there has been intensive attention paid to the resonant magnetotunnelling in 
DBHSs because it has been proved to be a powerful tool to study the dynamics of electrons 
in them [19-251. In research on resonant tunnelling in DBHSs when a magnetic field 
is applied perpendicular to the growth direction, the GTM has been used theoretically to 
study the magnetotunnelling current and intrinsic bistability without considering inelastic- 
scattering processes [21,22]. The effect of the magnetic field is considered by introducing 
an effective potential Vn(z) = fiw,(z)(n + 1) + V(z), where o,(z) is the cyclotron 
frequency and V ( z )  is the one-dimensional potential for zero magnetic field. Then the 
current is determined through calculation of the total elastic transmission coefficient Te 
of the structure. The numerical results are found to be in agreement with experiments 
in describing the main features. Schulz and Tejedor [26] developed the GTM to study 
resonant magnetotunnelling processes associated with inelastic events by adding the inelastic 
contribution term (ri/re)Te to the total transmission coefficient (where ri and re are 
respectively inelastic and elastic scattering half-widths). Their calculations have improved 
the overall shape of the current density curves. But there are still considerable quantitative 
discrepancies between experiments and their theoretical calculations in predicting the peak 
position of the curves and the position of the negative differential conductance. Note that the 
earlier experiments were interpreted in terms of the sequential tunnelling model [ 19,201 and 
Plater0 etal [27] have applied it to study DBHSs with an applied magnetic field perpendicular 
to the cwen t .  Although the physics has been described by these authors, it is worthwhile 
to study it theoretically in more detail. Moreover the STM provides a natural frame in 
which the effects of the space-charge accumulation in the electrodes and in the well may 
be conveniently considered. Hence, we  present here results of the resonant tunnelling via 
Landau levels in DBHSs with an applied magnetic field parallel to the current in the STM. 
Expressions for the tunnelling current and differential conductance are derived on a firm 
background. Under appropriate approximations, it is then shown that the tunnelling current 
and differential conductance can be written as simpler forms which analytically reproduce 
the main features of experiments. The results here will show that the space-charge formation 
in the electrodes and in the well plays an important role in determining the overall shape 
of the current density and differential conductance curves as well as their peak positions. 
Finally, the dependences on the temperature and magnetic field are studied numerically. 

2. Theory and calculations 

We consider a DBHS consisting of n+-GaAs (emitter)/Ga(,,,AI,As (first barrier)/GaAs 
(well)/Ga,-,AIAs (second barrier)/n+-GaAs (collector). A magnetic field B and a bias 
of voltage U are applied perpendicular to the interfaces. Our analysis is restricted to the 
conduction-band bottom of the structure with the standard effective-mass parabolic-band 
approximation. Firstly, we ignore the effects of the space-charge in the electrodes and in 
the well. The potential diagram of a DBHS with an applied bias is shown in figure l(b). 
To avoid unnecessary numerical complications, we replace the actual potential (solid line 
in figure l(b)) by a simpler step potential (dotted line in figure l(b)). The errors thus 
introduced are generally believed to be too small to affect the quantilative results when the 
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Fiyre 1. Conduction-band diagram of adcublebarrier 
hetemsuuuwe, sandwiched between M emiller (in+- 
GaAs) and a collector (n+-GaAs:l. is the Fermi 
energy level in the electrodes. st, and 8;) correspond 
to the longitudinal quasibound levels in the well. ( a )  
Without an applied voltage. (b) With an applied line for = 4  meV. 
voltage. 

Fignre 2. Tunnelling current density J t p u g h  a DBHS 
vAh parameters used in [26]: h = 50 A, U = 40 h; 
fi) = 300 m e t  m; = 0.067ma and m; = O.lOlmo; 
m = 54 meV: so = 101 meV: the dotted line is for 
r, = 0, the dashed line for r, = 2 meV and the solid 

applied bias is low [28]. Hence, the quasibound level in the well decreases linearly with 
the applied bias 

.sb  EO - Aeu - (1) 

where.?;) and .so represent. respectively, the quasibound level in the well along the z direction 
with and without the applied bias. 

It is known that, in the STM. the density of the quasibound states in the well is 
characterized by the following function [18,29]: 

where r is the broadening half-width of the quasibound level. When the inelastic events 
are present we have F' = re + ri, where re can be obtained numerically or analytically if 
the bias dependence is neglected [30], while ri is treated as a free parameter in the present 
work. It should be mentioned that the density of the quasibound states is in principle 
sensitive to the frequency of incoherent events. When the inelastic half-width is too large, 
the density of the quasibound states used above becomes inadequate [29]. Fortunately, in 
the magnetoresonant tunnelling experiments, our interest is restricted to I' < iiw where w 
is the cyclotron frequency. 
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The applied magnetic field B quantizes the motion of the electrons in the r-y 
plane (perpendicular to the tunnelling directon), resulting in Landau levels with energies 

= (n  + f)ho, where n is the level index (n = 0, 1,2, . . .), w = eB/m:  (m: is the 
effective mass of an electron in the electrodes or in the well). We introduce notations 
NI = (nl, klZ), Nw = (nw, kWL) and NI = (nr, kr2) respectively describing the electron states 
in the emitter, in the well and in the collector. Denoting the electron energies in the emitter 
by 81, in the well by E, and in the collector by E ~ ,  we have the following relations: 

(3) Ei = (4 +ni)ho + Elz 

It is worthwhile to point out that from the viewpoint of the STM [ l l ,  17,18,291, the 
electron state density along the z direction in the emitter or collector electrode is determined 
by the dispersion relation (4) or (S), whereas the density of states in the well is determined 
by the equation (2) which implicitly takes into account the effects of confinement of the 
barriers as well as interaction with the continuum outside the well. 

The transition rates of an electron from the electrode to the well WI, (= W,]) and from 
the well to the collector eleceode W,, (= W,) are respectively 

(9) 

(10) 

2n 
h 

2n 

w w  = -~MI,~~~(EI - Ew)s(ni - nw) 

Wwr ~ ~ M w c ~ ~ ~ ( E w  -Er) s (nw - E r )  

where M is the Oppenheimer transition Hamiltonian [31, 17,181 

(12) 
h2 

2mLa lMwr12 = - [(Ewz -!- i e u ) ( E w z  e~)ll'~T(E,) 

where a is the width of the well, L is the width of the emitter or collector, and T, are 
respectively the transmission coefficients that electrons tunnel through the left barrier and 
right barrier. Under the step potential approximation (shown in figure I @ ) ) ,  by using the 
transfer-matrix technique 7i and can be expressed as 

if VO - h s  - E I ~  =- 0 

if vo - -!L r" - ElL = 0 

, , , ,  , ,  , .. if v0 - h s  - sli < 0 

4kwJkli 
( I + t i l k ~ ~ ) ' C o s h ' ( k ~ , h ) + ( K ~ ~ l v k ~ ~  -yk~ilki,)'r*nh'(h~ih) 2h+n 2 

=+a 2 (13) 
4!+:/kNz 

(i+k,,/K~:)' s o W , h ) + ( k , / y k ; , ,  - ~ k ~ , ' / k , : ) z ~ i " * ( ~ , , h )  Zht"  2 



Resonant magnetotunnelling in DBHSS 10035 

and 

where b and VO are respectively the barrier width and the height, y = m:/m; (m; is 
the effective mass of an electron in the barriers) and the wavevectors in the barriers are 
Petermined from the parabolic energy-momentum relation 

36 + 2a eu 
khz = [zmi ( VO - -- 

2n+b 2 

3 b f 2 a e u  kh2= 2m; -VO+-- [ ( 2a+b 2 

The current density of the system is given by the following equation: 

where fi and fw are the electron distribution functions respectively in the emitter and the 
well. When there exists a steady current, f w  is determined by the balancing equation 

where f, is the distribution function in the collector. Assuming that the distribution 
function of electrons in the emitter and in the collector satisfy the Fermi-Dirac distribution 
( f i ( ~ 1 )  = (exp[(~ i  - +)/KT1 + I)- ' .  f d ~ d  = {exp[(Er + eu - &F)/KT] + 1)-'), the 
steady-state distribution function in the well is found to be 

Combining equations (19) and (21) the current density is finally given by 
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from which the differential conductance per unit area a = a Jf av can also be calculated. 
It is known that space-charge accumulation in the electrodes and in the well bend the 

bottom of the conduction band near the interfaces. In order to include this effect, we assume 
that the space-charge distribution in the electrodes and in the well is homogeneous. The 
area charge densities in the electrodes are evaluated by the method given in [ZO], while the 
area charge density in the well can be obtained from equation (21). By applying the Gauss 
law, the step potential approximation of DBHSS can be given as follows: 

V(z) = 

where E is the static dielectric constant; 6, or 6 ,  is the width of the space-charge accumulation 
layer in the emitter or collector 

and 

A 

E($+a+2b) - lu -0 .5uw 

In equation (24) N ( E F )  is the density of states at the Fermi energy; in equation (25) 

3 h=T($) 
ow is the area charge density in the well 

oe is the area charge density of the accumulation layer in the emitter 

a + 2b +& - U 
ae = -2& 

6, + 2a + 4b + 6, 8, + 2a + 4b +Scuw 

According to equation (23), equation (1) should be modified as 

a e  a, 
& b = & 0 + e ( S , + a + 2 b ) - + + ~ - .  2E S E  

Combining with equations (23) and (27)-(29), 4 and Tr can be calculated self-consistently 
by means of the transfer-matrix technique considering the spacecharge formation in the 
electrodes and well. So the tunnelling current density and the differential conductance can 
be obtained from equation (22) again. 
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3. Results and discussion 

For comparison with theoretical calculations ofthe previous works [26] based upon the GTM 
through the whole structure, we calculate the current densities with the same parameters 
without considering the effects of the space-charge formation in the electrodes and well. The 
results for current density calculated here (shown in figure 2) are the same as their numerical 
calculations (figure 2 in [26]) in the overall shape and peak positions as well as the order of 
magnitude. But our results display the tendency that the magnitudes of the current density 
curves decrease gradually with increasing inelastic-scattering half-width, in acc0rdanc.s with 
the prediction of [29]. Therefore it may be concluded that equivalence between the STM and 
the GTM is preserved when a magnetic field is applied and inelastic-scattering broadening 
is included. At ri = 0, the equivalence between the STM and the GTM has been discussed 
in [NI. The resemblance to previous work is not surprising since [29] has shown that the 
state density of equation (2) is valid in the crossover from elastic scattering to inelastic 
scattering. It is worthwhile to point out that the GTM requires a calculation of the total 
transmission coefficient while the STM requires a calculation of the transmission coefficients 
of single barriers. Numerical results between the two methods may differ a little. When Ti 
is so large that the density of states cannot be written in the form of equation (2), the two 
methods are no longer equivalent. 

As a matter of fact, the quasibound-level broadening r (- meV) in the well is much 
smaller than the ground-state energy EO (- 100 meV) for DBHSs with a well of 40 A or 
wider. One also knows that in the resonant region both a(&;) and E(&;) are slowly varying 
functions of the applied bias and therefore may be approximately regarded as insensitive to 
the applied bias [28]. When the temperature is low enough, the Fermi-Dirac distribution 
function m e s  the form of a step function when quasi-Fermi energy is introduced taking 
into account the thermal equilibrium with the nearby contacts. That is to say that we can 
set = 0 (in the resonant region ev >> E F )  for the collector, whereas fi = 1 ( E ]  < E F )  or 
fi = 0 ($1 z E F )  for the emitter. Then equation (22) is rewritten as 

where E, = EF - ($ + n~)Ro. After integration over &lZ we finally obtain 

where N is an integer satisfying 

EF - (f + N ) h o  >. 0. 

The differential conductance is consequently determined by 

Provided that 8; >> r in the resonant region, we have approximately 

eZw (2m:Eo) (EA)  E, (Eh) r 
a =  

87raA zi@;I) + T,(&;I) [(EF - (4 +n#w - 4 I Z  + r2’ ‘ (34) 



10038 Xue-Hun Wang et a1 

It can be seen that the differential conductance shows oscillation as the applied bias 
varies and reaches a maximum when 

(35) I &F - &;1 - (? + n1)Ao = 0. 

From equation (33), we can see that the minimum of the negative differential conductance 
occurs when 

&;, = 0. (36) 

Equations (35) and (36) analytically reproduce the main features obtained in the experimental 
work of Mendez et a1 [19], when combined with equation (32). This is not a surprise since 
in their analyses the quantum well serves as 'intermediate' resonant states, through which 
tunnelling takes place, and remains unoccupied otherwise. These ideas are in fact the same 
as those in the sequential tunnelling model of Luryi. Besides the quantitative agreement 
discussed above, one virtue of the present results, equations (31) and (34), is that simple 
expressions for the resonant current and the oscillatory differential conductance are derived 
which could be used to compare with experiments quantitatively. Other theoretical works 
[21,22], based upon the total transmission coefficient of the whole structure, are in general 
not so straightforward and need much more numerical calculation. 

In order to quantitatively compare with the experimental results in [21], we have 
performed numerical calculations of the current density and differential conductance for 
a DBHS starting from the expression of equation (22) at r < Ao. The DBHS consists of a 
GaAs well of width 40 A sandwiched between two Ga,,Al,As barriers of width 100 A, 
where x = 0.33 corresponds to a barrier height of 0.3 eV. The two electrodes are assumed 
to be doped uniformly to a level of electron concentration of 7 x loz3 m-' yielding a Fermi 
energy of about 0.43 eV. The effective masses are chosen to be 0.067mo and O.lOlmo, 
respectively, in the well and barrier regions, where mo is the free electron mass. We find 
the ground state in the well is &g = 0.1 18 eV when no bias is applied [30]. We firstly perform 
the numerical calculation at ri = 5 meV without considering the effects of the space-charge 
formation in the electrodes and well. The results are shown in figure 3. It can be seen 
that in this case there are considerable quantitative discrepancies between the experimental 
results and theoretical calculations in both overall shape and peak value positions of J-U 
and a-U curves. In particular, there a e  negative maxima in the a-U curves when B = 5 T 
and 10 T. We believe that these discrepancies result from our ignoring the space-charge 
formation in the electrodes and well, Figure 4 shows that the influence of the space-charge 
formation is remarkable. It can be seen that at ri = 5 meV the results of figure 4 here are 
in good agreement with the experimental results of figures 3 and 4 in 1211 not only in the 
overall shape of the curves but aka the peak positions. In particular, the position of the 
negative differential conductance is almost equal to the measured value of experiments (our 
calculation value, U N 0.263 eV; experimental value, U N 0.27 ev). Note that the variation 
of ri changes the overall shape of the curves as well as broadening the resonance but it 
does not change the positions of the peak and valley values of the curves. 

In fact, the influence of the space-charge formation in the electrodes and well can be 
analytically seen from (29), (35) and (36). From (29) and (33,  we obtain the peak positions 
of the differential conductance 

eu,, = CY-' (EO - EF - A) + a-'($ + nl)Rw (37) 

with 

, ... , ., ,. , . . ,, , , , 
~~ 

, ,  
6 ,  f a  + 2b 

6, +2a + 2b + 8, 
C Y = '  
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I , , , , , , , , , !  
0.10 0.14 0.18 0.22 0.26 ' 0.30 

VOLTAGE(V) VOLTAGE(V) 
Figure 3. ( U )  Current density J as 3. function of applied voltage for the DBHS with pwnmeters 
Stated in the text, without considering the space-charge famarion in the electrodes and well. 
( b )  Differential conductance (r as a function of applied voltage under the same conditions as 
(a). For clarity. the /-U and c-u curves have been offset by a value of 6 x IO3 A m-* and 
4 x IO5 Q-' m-* for neighbouring magnetic flelds. respectively. 

and 

From (29) and (36), we find that the negative differential conductance occurs at 

eu- = a:-' (Eo - A). (40) 

In the resonant region, we find that 8, and uw are insensitive to the applied bias U. For the 
DBHs with a = 40 .& and b = 100 A, we have a: N 0.46, uw N 0.7 x C m-2 a nd 
A 2: -3 meV yielding U- z 0.263 V. If ignoring the effects of the space-charge formation 
in the electrodes and well, we have 6, = 6, = 0 and uw = 0 yielding U- = 0.236 V. The 
analytical results again show that the effects of the space-charge formation in the electrodes 
and well are significant. 

From equation (37), we can see that for a given applied bias the resonant peak may 
occur many times with increasing B when nl > 1 satisfying equation (37). The oscillatory 
behaviour is  periodic in 1 / B ,  with the period 

eh 
m : ( & ~ - & ~ + a : e u +  A ) '  

T, = 

This kind of periodic oscillatory behaviour can be clearly seen from the J-B curves shown 
in figure 5. 
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Figure 4. ( U )  J-U chnmcteristics for the same structure as figure 3. with the spnce-charge 
formation in the electrodes and well considered, (b)  v--v ch3l;lcreristics under the same 
conditions as (a). For clarity. the J-U and (r-U curves have been offset by a vnlue of 
2 x 104 A m-z and 2 x IO6 Cl-' mm2 for neighbounng magnetic fields, respectively. The 
dotted line is for fi = 3.meV. the solid line for r, = 5 meV. 

1.6E9 

Figure 5. I -B  characteristics a1 different fixed 
biases for the svuc~ure of figure 4 with a different 
barrier width of h = 30 A. A value of Ti = 
0 meV is assumed. The effects of the space-charge 
formacion in the electrodes and well we taken into 
account. 
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VOLTAGUV) VOLTAGE(V) 

VOLTAGE(V) 

F i y r e  6. Diffemrial conducwnce d as a function 
of applied voltage for the same structure as figure 5. 
considemg the space-Ch;l%e formation in the elemodes 
and well. For clarity. rhe 0-U curves have been offset 
by a value of 3 x IO"' C2-l m-* for neighbauring 
magnetic fields. [a) With a temperature of I K. (b) 
with a temperature of 20 K, (c) with a remperature of 
40 K. 

In order to study.the temperature dependence of resonant tunnelling in detail, we  plot 
the c--U curves for magnetic fields ranging from 5 T to 20 T at temperatures 1 K, 20 K 
and 40 K respectively in figures 6(a), 6(b)  and 6(c), considering the effects of space-charge 
formation in the electrodes 'and well. For clarity the current-density curves are offset by 
a value of 3 x IO8 A m-' for neighbouring magnetic fields. Our calculations show that 
the modulations induced by Landau levels in the differential conductance curves are well 
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resolved at low temperature. For magnetic fields of 5, 8 and 12 T there are respectively 
four, three and two peaks observed in accordance with equation (32). For magnetic fields 
B > 16 T, the quantum limit is reached and thus only the lowest Landau level is occupied. 
The tendency is observed that modulation arising from the Landau levels is smeared and 
the shapes of the curves tend to the limit of B = 0 as the temperature is increased. This 
confirms that the Landau level splitting must be large compared to the thermal energy. This 
can be seen in figure 4(6) where the oscillations at a magnetic field of 5 T vanish, while 
those at higher magnetic field can still be resolved at a temperature of 20 K. 
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